Quantitative analysis of inward and outward transport rates in cells stably expressing the cloned human serotonin transporter: inconsistencies with the hypothesis of facilitated exchange diffusion.
نویسندگان
چکیده
Quantitative aspects of inward and outward transport of substrates by the human plasmalemmal serotonin transporter (hSERT) were investigated. Uptake and superfusion experiments were performed on human embryonic kidney 293 cells permanently expressing the hSERT using [(3)H]serotonin (5-HT) and [(3)H]1-methyl-4-phenylpyridinium (MPP(+)) as substrates. Saturation analyses rendered K(m) values of 0.60 and 17.0 microM for the uptake of [(3)H]5-HT and [(3)H]MPP(+), respectively. Kinetic analysis of outward transport was performed by prelabeling the cells with increasing concentrations of the two substrates and exposing them to a saturating concentration of p-chloroamphetamine (PCA; 10 microM). Apparent K(m) values for PCA induced transport were 564 microM and about 7 mM intracellular [(3)H]5-HT and [(3)H]MPP(+), respectively. Lowering the extracellular Na(+) concentrations in uptake and superfusion experiments revealed differential effects on substrate transport: at 10 mM Na(+) the K(m) value for [(3)H]5-HT uptake increased approximately 5-fold and the V(max) value remained unchanged. The K(m) value for [(3)H]MPP(+) uptake also increased, but the V(max) value was reduced by 50%. When efflux was studied at saturating prelabeling conditions of both substrates, PCA as well as unlabeled 5-HT and MPP(+) (all substances at saturating concentrations) induced the same efflux at 10 mM and 120 mM Na(+). Thus, notwithstanding a 50% reduction in the V(max) value of transport into the cell, MPP(+) was still able to induce maximal outward transport of either substrate. Thus, hSERT-mediated inward and outward transport seems to be independently modulated and may indicate inconsistencies with the classical model of facilitated exchange diffusion.
منابع مشابه
The role of zinc ions in reverse transport mediated by monoamine transporters.
The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). Upon binding to this site, Zn2+ causes inhibition of [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) uptake. We investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded ...
متن کاملReview of Metabolism, Transport and Role of Serotonin in the Body and the Relation between Serotonin and Diseases
Serotonin (5-hydroxytriptamine), one of the most important neurotransmitters, is synthesized from amino acid L-tryptophan in some neurons located in the central nervous system and intestine enterochromaffin cells . The role of this neurotransmitter is important and involves control of sexual behaviors, morality, sleep, pain, appetite, aggression, cardiovascular function and regulation of gut fu...
متن کاملCocaine acts as an apparent competitive inhibitor at the outward-facing conformation of the human norepinephrine transporter: kinetic analysis of inward and outward transport.
The inhibition by cocaine of inward and outward transport of dopamine (DA) at the cloned human norepinephrine transporter (hNET) and the relationship of the inhibitory patterns of cocaine to the conformational requirements of the transporter were investigated. This was done using rotating disk electrode voltammetry in transfected cells. The uphill uptake of external DA, the lack of inhibition b...
متن کاملControl of serotonin transporter phosphorylation by conformational state.
Serotonin transporter (SERT) is responsible for reuptake and recycling of 5-hydroxytryptamine (5-HT; serotonin) after its exocytotic release during neurotransmission. Mutations in human SERT are associated with psychiatric disorders and autism. Some of these mutations affect the regulation of SERT activity by cGMP-dependent phosphorylation. Here we provide direct evidence that this phosphorylat...
متن کاملAmphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action.
Amphetamine congeners [e.g., 3,4-methylenedioxymetamphetamine (MDMA), or "ecstasy"] are substrates for monoamine transporters (i.e., the transporters for serotonin, norepinephrine, and dopamine); however, their in vivo-action relies on their ability to promote monoamine efflux. The mechanistic basis for this counter transport remains enigmatic. We tested the hypothesis that outward transport is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 59 5 شماره
صفحات -
تاریخ انتشار 2001